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Experimental data have linked exposure to prenatal organophosphates to adverse neurocognitive
sequalae. However, epidemiologic research has been hampered by lack of reliable dosimeters.
Existing biomarkers reflect short-term exposure only. Measurements of pesticides in postpartum
meconium may yield a longer-term dosimeter of prenatal exposure. As the initial step in bio-
marker validation, this research determined background levels, detection limits, and stabilities of
six organophosphate metabolites in meconium: diethylphosphate (DEP), diethylthiophosphate
(DETP), diethyldithiophosphate (DEDTP), dimethylphosphate (DMP), dimethylthiophosphate
(DMTP), and dimethyldithiophosphate (DMDTP). Calibration curves were also constructed.
The meconium was collected from 20 newborns at New York Presbyterian Hospital; analyses
were undertaken at the Centers for Disease Control and Prevention (CDC). DEP was detected in
19/20 samples (range 0.8-3.2 ug/g) and DETP was detected in 20/20 (range 2.0-5.6 pg/g).
DMP and DEDTP were each detected in 1/20 (at 16 and 1.8 pg/g, respectively). DMTP and
DMDTP were not detected. Detection limits were comparable to or lower than those in urine;
levels were similar to those seen in adult urine in population-based research. Metabolites were sta-
ble at room temperature over 12 hr. Calibration curves were linear over the range tested (0.5-400
ug/qg); recoveries ranged from 18% to 66%. Using isotope dilution, recoveries of each analyte in
individual samples can be corrected automatically based on the recovery of the respective stable
isotope-labeled analogue, making this method fully quantitative. Results indicate that measure-
ments of organophosphate metabolites in meconium have promise as biomarkers of prenatal
exposure. Further research is needed to determine the time frame of exposure represented by pes-
ticide levels in meconium and to evaluate the dose—response relationship. Key words: biomarkers,
meconium, organophosphates, pesticides, prenatal exposures. Environ Health Perspect
109:417-420 (2001). [Online 29 March 2001]
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Residential use of organophosphate insecti-
cides is widespread in the United States (1).
Resultant exposures can be appreciable and
have been shown to approach or even exceed
health-based standards (2-6). Many
organophosphate compounds are lipophilic
and readily cross the placenta (7). Experi-
mental evidence has linked organophosphate
exposure during gestation or the early post-
natal period to adverse neurodevelopmental
sequelae in offspring (1,8). Exposures during
the spurt in brain growth (which in humans
begins during the third trimester) may be
particularly deleterious (9-14). However,
epidemiologic research on this relationship is
limited and has been hampered partly
because of uncertainties in exposure esti-
mates. Although biologic markers can be
useful in understanding the role of environ-
mental contaminants during fetal develop-
ment (15-17), research on the effects of
prenatal organophosphate exposure has been
limited by the lack of biomarkers reflecting
cumulative exposures. Available biomarkers,
including blood and urine measurements,
provide short-term dosimeters only (half-
lives range from 10 to 30 hr) (18-20).

Residential pesticide exposures are episodic,
with high peaks after application and
decreasing levels over time (3). Thus use of
available biomarkers as dosimeters can lead
to exposure misclassification if sample collec-
tion is not timed to pesticide application.
Although erythrocyte acetylcholinesterase is
a good biomarker for acute organophosphate
exposure, large intraindividual (13%—-25%)
and interindividual (10%-40%) variability
makes it unreliable as a dosimeter in low-
level exposure settings unless preexposure
values have been determined on each subject
(21-23).

Measurements of organophosphates in
meconium may yield a longer-term dosime-
ter of prenatal exposure. In human fetuses,
meconium begins to accumulate in the bow-
els at approximately 16 weeks gestation and
is generally not excreted until after delivery
(24). Meconium represents the intestinal
contents of the fetus and is a complex
matrix, consisting mainly of water but also
containing mucopolysaccharides, lipids, pro-
teins, bile acids and salts, epithelial cells,
cholesterol and sterol precursors, blood-
group substances, squamous cells, residual
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amniotic fluid, and enzymes (25). Prior
research on a broad range of xenobiotics indi-
cates that metabolites of compounds to which
the fetus has been exposed can be detected in
meconium. These include metabolites of
illicit drugs (25-32) , nicotine (33), alcohol
(34), analgesics, antihistamines, anesthetics,
the food additive butylated hydroxytoluene
(BHT), and heavy metals (26). One study has
also measured pesticide levels in meconium
(26). The xenobiotics appear to enter the
meconium as a consequence of bile excretion
into the intestines and/or of swallowing by
the fetus of amniotic fluid (35). Other mech-
anisms may be operating as well; drugs
injected directly into the amniotic fluid of
pregnant ewes were detected in meconium in
significant concentrations even after the
fetuses had undergone esophageal ligation to
prevent swallowing (36). The authors rea-
soned that the drugs reached the fetal circula-
tion by absorption across the umbilical cord
or diffusion across the placental surface.
Evidence suggests that the half-life of xenobi-
otics in meconium can be protracted and that
measured levels may reflect exposures from
the second trimester of pregnancy through
delivery (26,28,34, 35,37).

Materials and Methods

After obtaining Institutional Review Board
approval, we collected meconium samples
from the diapers of 20 newborns without
knowledge of prenatal pesticide use. Sample
collection was conducted over a 3-week
period by the postpartum staff at New York
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Presbyterian Hospital. Samples were trans-
ported to the Molecular Epidemiologic
Laboratory at Columbia University and
frozen within 8 hr of collection in all cases.
At the end of the collection period, the sam-
ples were shipped on dry ice to the Centers
for Disease Control and Prevention (CDC)
for analysis.

Before analysis, samples were thawed and
homogenized to ensure that the pesticides
were distributed evenly throughout the
meconium, and then lyophilized to remove
residual water. Approximately 0.5-1 g dried
meconium was suspended in 5 mL methanol.
After the addition of a stable isotope-labeled
internal standard, the suspension was mixed
by rotation and centrifuged to separate the
solids from the supernatant. The supernatant
was removed, evaporated to dryness, and
reconstituted in acetonitrile. The analytes in
the acetonitrile were chemically derivatized to
form their chloropropyl esters to make the
analytes more suitable for analysis by isotope
dilution gas chromatography—tandem mass
spectrometry (ID GC-MS/MS). Analyses
were undertaken by ID GC-MS/MS to eval-
uate background levels of six organophos-
phate metabolites: diethylphosphate (DEP),
diethylthiophosphate (DETP), diethyldithio-
phosphate (DEDTP), dimethylphosphate
(DMP), dimethylthiophosphate (DMTP),
and dimethyldithiophosphate (DMDTP).
These metabolites are common to 1 or more
of 28 different organophosphates, as shown in
Table 1, and have been measured extensively
in biological samples as specific indicators of
both occupational and environmental expo-
sure to organophosphate pesticides (38-43).

To determine stability of the metabolites
in meconium, aliquots of meconium from
the 20 newborns were thawed, pooled, and
kept at room temperature for 0-12 hr, with
analyses performed every hour. For analyses
to construct calibration curves and to deter-
mine recoveries, we spiked 0.5 g meconium
with an appropriate concentration of stan-
dard and analyzed as described above. To
evaluate the meconium matrix effects, we
compared the calibration curve slopes and
intercepts and the reconstructed ion chro-
matograms from the analysis of spiked
meconium samples to those of pure stan-
dards analyzed using the same technique.

Results

Table 2 shows the levels of the six
organophosphate metabolites in postpartum
meconium samples from the 20 newborns.
We verified that the measured metabolites
were not present in the diapers themselves.
DEP was detected in 19/20 (95%) of the
samples (range 0.8-3.2 ug/g), and DETP
was detected in 20/20 (100%; range 2.0-5.6
Hg/g). DMP and DEDTP were each detected
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in 1/20 (5%) of the samples at levels of 16
ug/g and 1.8 ug/g, respectively. DMTP and
DMDTP were not detected.

Table 3 shows the stability of the
organophosphate metabolites in meconium
at room temperature from 0 and 12 hr.
Concentrations of DEP and DETP were

stable over the entire period, with < 1.5%
variability. Concentrations of DMP were
more variable, but there was no trend with
time. Levels of DEDTP were too low to
determine stability.

Figure 1 shows calibration curves for the
six metabolites, and Table 4 shows the R2 of

Table 1. Organophosphate pesticides, common metabolites, and insecticidal uses.

Metabolites
Pesticides DMP DMTP DMDTP DEP DETP DEDTP Insecticidal uses?
Azinphos-methyl X X X Crops, trees, ornamentals
Chlorethoxyphos X Crops (corn)
Chlorpyrifos X Crop, lawn/turf, residential, termiticide,

Chlorpyrifos-methyl X X

Coumafos X
Diazinon X
Dichlorvos (DDVP) X

Dicrotophos
Dimethoate
Disulfoton X
Ethion X
Fenitrothion
Fenthion
Isazofos-methyl
Malathion
Methidathion
Methyl parathion
Naled

> X<
XX X X X X >
>

XX X X X X X

>
>

Oxydemeton-methyl
Parathion X
Phorate X
Phosmet
Pirimiphos-methy!
Sulfotepp X
Temephos X X

Terbufos X
Tetrachlorvinphos X

Trichlorfon X

ornamentals, pet collars, pasture,
livestock?
Stored grain
Livestock
Crop, lawn/turf, residential/commercial
Pest strips, residential, food, storage/
processing, livestock
Crops (cotton)
Crops, ornamentals
X Crops, ornamentals
X Crops (citrus), livestock
Residential/commercial ant/roach bait
Livestock, mosquito control (Florida)
Registrations canceled
Crops, livestock, lawn/turf, mosquito
Crops
Crops
Crops, greenhouse, flea collars, mosquito,
fly
Crops
Crops®
X Crops
Crops, ornamental, forestry, livestock
Stored corn, seed, grain, livestock, bulbs
Greenhouses, ornamentals
Mosquito larva
X Crops
Livestock, domestic animals (dogs/cats)
Ornamentals, turf, agricultural premises,
nurseries, ants

aSources on insecticidal uses from U.S. EPA (47). 2indoor uses being phased out. <Crop uses being phased out.

Table 2. Levels of six organophosphate metabolites in postpartum meconium samples collected from 20

newborns (ug/g).

SAMPLE DEP DETP DEDTP DMP DMTP DMDTP
1 1.90 2.00 ND ND ND ND
2 1.40 3.80 ND ND ND ND
3 1.70 4.30 ND ND ND ND
4 2.00 2.30 ND ND ND ND
5 3.20 3.50 1.80 ND ND ND
6 1.20 2.40 ND ND ND ND
7 1.00 2.80 ND ND ND ND
8 1.10 2.00 ND ND ND ND
9 1.00 2.20 ND ND ND ND
10 1.30 2.70 ND ND ND ND
11 1.40 3.00 ND ND ND ND
12 1.30 2.50 ND ND ND ND
13 0.80 2.00 ND ND ND ND
14 2.50 5.60 ND ND ND ND
15 2.80 5.20 ND ND ND ND
16 0.90 2.50 ND ND ND ND
17 1.00 2.40 ND 16.00 ND ND
18 ND 2.00 ND ND ND ND
19 1.80 5.00 ND ND ND ND
20 0.90 2.40 ND ND ND ND

ND, not detected.
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the calibration lines and the detection limits
and percent recovery of the pesticides in
meconium. All calibrations were linear over
the entire range tested (Table 4). All R2 val-
ues were > 0.99, and the standard error
about the slope was < 4%. Minimal matrix
effects were observed. Due to fewer interfer-
ing coextractants, limits of detection were
comparable to or better than those observed
previously in urine samples from popula-
tion-based studies that have been analyzed at
the CDC. As Table 4 shows, the recoveries
of the dialkylphosphate metabolites from
meconium range from 18% to 66%. Use of
the isotope dilution technique allows com-
plete and automatic correction for analyte
recoveries for each sample, enabling a fully
guantitative analysis of the meconium.

Discussion

Results from this initial validation study show
that organophosphate metabolites can be
detected in postpartum meconium. It is inter-
esting that diethylphosphate and diethylthio-
phosphate were detected in 95%-100% of
the samples. Both are metabolites of the
organophosphates diazinon and chlorpyrifos
as well as several additional organophosphates
used primarily in agriculture (see Table 1),
and our findings are consistent with the wide-
spread residential use that has been reported
for these two insecticides (1,2,44). These
insecticides are also of concern because pre-
natal exposure to both chlorpyrifos and diazi-
non has been linked experimentally to
adverse neurodevelopmental sequelae in the
offspring (1,8). The other organophosphate
metabolites were detected only once
(dimethylphosphate and diethyldithiophos-
phate) or not at all (dimethylthiophosphate
and dimethyldithiophosphate). As seen from
Table 1, this may reflect the fact that they
are metabolites of organophosphates with
less frequent residential use.

Table 3. Concentrations of analytes in meconium
stored at room temperature.

Time (hr) DEP DETP DMP
0 0.81 2.6 6.7
1 0.82 2.6 —a
2 0.82 2.6 6.4
3 0.82 2.6 4.0
4 0.83 2.6 6.9
5 0.82 2.6 74
6 0.83 2.6 5.8
7 0.83 2.7 8.7
8 0.83 2.6 55
9 0.83 2.6 7.2
10 0.81 2.7 4.4
11 0.82 2.6 6.4
12 0.83 2.6 8.2
Mean 0.82 2.6 6.5
RSD 0.9 14 22

RSD, relative standard deviation.
4Measurement not taken.

Results also indicate that the measure-
ment of organophosphate metabolites in
meconium may have promise as a biomarker
of prenatal exposure. Detection limits for the
organophosphate metabolites in meconium
are low and comparable to or better than
those seen with adult urine (45). Further,
metabolite levels in meconium are several
orders of magnitude higher than those gen-
erally seen in umbilical cord blood samples
(usually nanograms per liter) (46) and are
similar to levels seen in adult urine in popu-
lation-based studies (45). In addition, the
pesticide metabolites appear stable in meco-
nium over 12 hr at room temperature,
which should facilitate ease of incorporation

Area/area internal standard

Concentration (ug/g)

Area/area internal standard

0 100 200 300 400
Concentration (ug/g)

Area/area internal standard

Concentration (ug/g)

of meconium measurements into research
protocols. Although recoveries of the
metabolites in meconium varied, low or vari-
able recoveries will not compromise analyses.
Using isotope dilution, recoveries of each
analyte in each individual sample can be cor-
rected based on the recovery of its respective
stable isotope-labeled analogue. Chemically,
the isotopically labeled analogues behave
identically to the analytes measured, but
they can be distinguished according to their
mass differences. Given these initial promis-
ing findings, further research is needed to
determine the time frame of exposure repre-
sented by pesticide levels in meconium and
to evaluate the dose—response relationship.
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Figure 1. Standard curves for analytes in meconium: (A) DEP, (B) DETP, (C) DEDTP, (D) DMP, (E) DMTP,
and (F) DMDTP. The solid lines are the linear regression lines, and the 95th confidence intervals are

shown as dashed lines.

Table 4. Specifications of the analytic method.

R2 of Percent error about Percent recovery Limit of

Analyte calibration lines calibration slope from meconium detection (ug/g)

DEP 0.9929 3.0 26 0.2

DETP 0.9908 34 55 0.09

DEDTP 0.9969 2.0 62 0.05

DMP 0.9963 22 18 0.51

DMTP 0.9998 0.5 63 0.18

DMDTP 0.9995 0.8 66 0.08
419
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